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Binary encounters between spherical particles in shear flow are studied for a system
bounded by a single planar wall or two parallel planar walls under creeping flow
conditions. We show that wall proximity gives rise to a new class of binary trajectories
resulting in cross-streamline migration of the particles. The spheres on these new
trajectories do not pass each other (as they would in free space) but instead they
swap their cross-streamline positions. To determine the significance of the wall-induced
particle migration, we have evaluated the hydrodynamic self-diffusion coefficient
associated with a sequence of uncorrelated particle displacements due to binary
particle encounters. The results of our calculations quantitatively agree with the
experimental value obtained by Zarraga & Leighton (Phys. Fluids, vol. 14, 2002,
p. 2194) for the self-diffusivity in a dilute suspension of spheres undergoing shear
flow in a Couette device. We thus show that the wall-induced cross-streamline particle
migration is the source of the anomalously large self-diffusivity revealed by their
experiments.

1. Introduction
Random displacements resulting from particle encounters in suspension flows lead

to hydrodynamically induced particle migration with respect to the local suspension
velocity (Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987; Bossis & Brady
1987). For non-Brownian particles under creeping-flow conditions, hydrodynamically
induced migration constitutes an important mechanism for particle redistribution in
the suspending fluid. Thus studies of particle encounters in flowing suspensions are
vital both from the fundamental and practical points of view.

As shown by Batchelor & Green (1972), two spheres passing each other in
unbounded shear flow return to their initial transverse (cross-streamline) positions
after a binary encounter is completed. This behaviour follows from the flow reflection
symmetry of the Stokes equations and a reflection symmetry of the system. Since
on open binary trajectories there are no cross-streamline particle displacements, for
perfect spheres in free space the transverse hydrodynamic-diffusion process requires
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encounters of at least three particles (see e.g. Acrivos et al. 1992, Wang, Mauri &
Acrivos 1996, 1998, Drazer et al. 2002) . It follows that the self-diffusion coefficient
scales as Ds ∼ O(φ2) in the low-concentration regime, and the O(φ) contribution
associated with binary encounters arises only in the presence of non-hydrodynamic
forces that remove the flow-reflection symmetry of the problem. For non-Brownian
particles non-hydrodynamic interactions often result from direct particle contacts due
to surface roughness.

Several years ago Zarraga & Leighton (2002) measured the O(φ) contribution to
the shear-induced self-diffusivity Ds for a dilute suspension of spheres undergoing
shear flow in a Couette device. The experiments yielded a surprising result: the self-
diffusion coefficient was nearly an order of magnitude higher than the theoretical
estimate (da Cunha & Hinch 1996; Zarraga & Leighton 2001) for rough spheres
with the roughness amplitude corresponding to the experimental system. Several
possible causes of the anomalous self-diffusivity (such as inertial lift and non-
Newtonian effects) were examined, but none of them was sufficient to explain the
anomaly.

The suspension in the Couette device used in the experiments of Zarraga & Leighton
(2002) was bounded by nearly flat parallel walls separated by a relatively small
distance H = 20d (where d is the particle diameter). In the analysis of experimental
results it was assumed that the effect of walls on the self-diffusivity coefficient must
be negligible. Since the fore–aft symmetry of the system would ensure that after
passing each other the particles would return to their original streamlines (as they do
in infinite space), it seemed unlikely that the walls were the cause of the enhanced
self-diffusivity.

In the present paper we show that hydrodynamic interactions of particle pairs
with the confining walls result in cross-streamline particle displacements in binary
encounters in shear flow. Specifically, we have found a new class of binary trajectories:
the particles on such trajectories initially approach each other, but then they move
across the channel in opposite directions and separate without passing each other
(unlike the particles in free space).

The new class of trajectories results from a sign change of the transverse component
of the relative particle velocity. Such sign changes in wall-bounded systems were first
pointed out in our recent study (Bhattacharya, B�lawzdziewicz & Wajnryb 2005a).
Thus seemingly subtle features of particle mobilities produce a significant qualitative
effect: our explicit calculations show that when the new class of particle trajectories is
included in an estimate for the shear-induced self-diffusivity, a quantitative agreement
is obtained between the measurements of Zarraga & Leighton (2002) and theoretical
predictions. Hence, the paradox of the unusually large self-diffusivity observed by
Zarraga & Leighton (2002) has been resolved.

The system considered in our paper is defined in § 2. The new class of binary
trajectories resulting in cross-streamline particle displacements and the physical
mechanism leading to this behaviour is discussed in § 3. In § 4 we analyse the
consequences of the new pair trajectories for cross-streamline particle migration in
suspensions of spheres in the low-concentration regime. Our findings are summarized
in § 5.

2. Definition of the system
We consider the dynamics of binary encounters of spherical particles undergoing

stationary shear flow in a space bounded by a single planar wall or two parallel planar
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Figure 1. System definition and schematic representation of a non-swapping binary
trajectory.

walls separated by the distance H . We focus on configurations where the particle–wall
separation is comparable to the sphere diameter d . The suspending fluid has viscosity
η, and creeping flow conditions are assumed.

We use a coordinate system where the walls are in the x–y planes. The positions
of particle centres are denoted by r i and the linear velocities of the particles by U i ,
where i = 1, 2. The walls are at z = 0 and z = H . Particle encounters are described
using the relative coordinates �r = (�x, �y, �z), where

�r = r2 − r1 (2.1)

is the relative position vector centred on particle 1.
The unperturbed fluid velocity

vext (r) = γ̇ zêx (2.2)

(where γ̇ denotes the shear rate) points in the lateral direction x, and varies in the
normal direction z. The flow occurs due to the motion of the upper wall with velocity

Uw = γ̇ H êx. (2.3)

Particles are torque and force free. No-slip boundary conditions are imposed at both
walls and at the particle surfaces.

In our calculations of particle trajectories, interparticle and particle–wall
hydrodynamic interactions are accurately taken into account. For a one-wall system
the particle velocities are evaluated using a reflection technique (Cichocki et al. 2000),
and for the two-wall system we use the Cartesian-representation method, recently
developed by our group (Bhattacharya et al. 2005a, b, 2006a). The equations of
motion ṙ i = U i (where the dot denotes the time derivative) are integrated using a
Runge–Kutta algorithm with an adaptive time step (Press et al. 1992).

The geometry of the system and a sketch of trajectories for two spheres that pass
each other are shown in figure 1. The trajectories in this figure are not to scale, and
an accurate representation of the trajectories can be seen in figure 2.

3. Effect of walls on the dynamics of binary collisions
3.1. The morphology of open trajectories

An analysis (Lin, Lee & Sather 1970; Batchelor & Green 1972; Zinchenko 1984)
of the relative motion of a pair of spheres in unbounded shear flow (2.2) indicates
that all open trajectories start from �x = −∞ and extend to �x = +∞ (in a reference
frame fixed on the initially slower particle 1). During the approach of the particles
their relative vertical offset �z increases, reaching a maximum when the particle
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Figure 2. Examples of non-swapping (a) and swapping (b) trajectories for two spheres in
shear flow (2.2) between parallel planar walls. The walls are at z = 0 and z = 5d , where d is the
particle diameter. The lower wall is at rest, and the spheres are moving in the flow–gradient
plane x–z. Equal-time positions of sphere centres are connected by dotted lines. The inset
shows a blowup of the trajectory-intersection region.

pair crosses the vorticity–gradient plane �x = 0. However, after the particles have
separated, they return to their initial cross-streamline positions (y, z), in accordance
with the flow-reversal symmetry of the Stokes equations and the symmetry of the
system with respect to the reflection of the x-coordinate.

For sufficiently large initial vertical offsets �z particle trajectories in wall-bounded
systems are qualitatively similar to those in free space. The only distinctive feature
of the trajectory depicted in figure 2(a) is that �z decreases before reaching the
maximum for the particle pair in the symmetry plane �x = 0, while in free space �z

would increase monotonically.
However, for smaller initial values of �z we find an entirely different behaviour:

for the new kind of open trajectories shown in figure 2(b) the offset �z changes sign
before the relative position �x = 0 has been reached. Accordingly, the component
�Ux of the relative velocity

�U = U2 − U1 (3.1)

also changes sign. The particles do not pass each other – they turn around and
separate, maintaining �x < 0 for the whole trajectory. As a result, the spheres do
not return to their initial streamlines at long times but instead they swap their
vertical coordinates z. Such particle encounters result, therefore, in displacements of
the suspended particles across streamlines of the external flow.

The difference in topology of pair trajectories in unbounded space and in a parallel-
wall channel is clearly seen in figure 3, where the relative particle motion is depicted
in the reference frame centred on one of the particles. In free space (figure 3a)
the contact surface |�r | = d is surrounded by an envelope of closed orbits, and
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Figure 3. Relative trajectories for pairs of spheres undergoing evolution in shear flow (2.2) in
free space (a) and in a channel of width H/d = 5 (b). The spheres move in the flow–gradient
plane x–z, and the trajectories are shown in the relative coordinates (2.1) for different initial
vertical offsets of particle centres �z. In the wall-bounded system, the sphere with the larger
initial value of the coordinate z starts at a distance z/d = 2.4 from the lower wall (as in
figure 2). (c) The evolution of the dimensionless interparticle gap (3.2) for the trajectories
displayed in (b). The gap evolution for swapping trajectories is represented by the heavy lines.

all open trajectories correspond to particles passing each other. In contrast, in the
wall-bounded system (figure 3b) there also exists a region of swapping trajectories,
delimited by the critical trajectories crossing the plane �z = 0 at the points where
�Uz = 0.

We emphasize that the swapping trajectories do not violate any symmetries of
the system. Since the particles do not pass each other, individual trajectories are
not symmetric with respect to the reflection x → −x. However, for each trajectory in
the half-space �x < 0 there is a corresponding reflected trajectory in the half-space
�x > 0.
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Figure 4. Vertical component of relative velocity (3.1) for two spheres aligned along the flow
direction x, versus particle separation �x. Different lines correspond to different positions z
of the particle pair with respect to the lower wall. (a) Results for a two-wall system with wall
separation H/d = 5 and (b) for a one-wall system. Positive values of �Uz correspond to the
swapping-trajectory domain.

The position-swapping trajectories have several important consequences. First, such
trajectories contribute to cross-streamline particle migration in dilute suspensions
bounded by planar or nearly planar walls. In particular, this migration mechanism
explains the enhanced hydrodynamic self-diffusivity observed by Zarraga & Leighton
(2002), as discussed in § 4.

Second, the swapping effect prevents near-contact particle encounters for slightly
misaligned particles (i.e. particles with small initial values of �z). The results depicted
in figure 3(b) indicate that spheres on the swapping trajectories approach each other
less closely than spheres on the usual non-swapping trajectories (i.e. when the particles
pass each other). A detailed view of the evolution of the dimensionless gap between
the particles,

ε = |�r |/d − 1, (3.2)

is depicted in figure 3(c). The results (shown for each of the trajectories displayed in
figure 3b) indicate that the gap on non-swapping trajectories may decrease to about
ε ≈ 10−5, whereas on the swapping trajectories ε always remains of order one.

In spite of the hydrodynamic shielding associated with the swapping mechanism
that prevents near-contact particle approach, the overall effect of the walls on the rate
of near-contact particle encounters in a suspension of randomly distributed particles
is small. This is because the minimal interparticle gap on the non-swapping open
trajectories in a wall-bounded system is smaller than the corresponding value in free
space for the same initial particle offset �z. The effect of the hydrodynamic shielding
for small �z is thus compensated by the closer particle approach for larger values of
�z.

Nevertheless, the hydrodynamic shielding associated with the swapping mechanism
may have significant consequences for microfluidic systems, where precise
manipulation of linear arrays of nearly aligned particles (or drops) is very important.
For such arrays �z is entirely within the swapping domain. Thus the swapping
mechanism, present not only in shear flow but also in pressure-driven flow, may
inhibit aggregation of particles by preventing their approach (which would otherwise
occur due to slightly different velocities in different streamlines).
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3.2. Mechanism for particle swapping

As shown in figure 3(b), the swapping trajectories occur when the vertical component
�Uz of the relative particle velocity (3.1) is negative in a subdomain of the particle
configurations with �x < 0 and positive in the corresponding subdomain of the
region �x > 0. Consider, for example, a pair of spheres located in a flow–vorticity
plane z = const, and assume that �x > 0, i.e. sphere 1 is to the left of sphere 2. If
�Uz > 0 in this configuration, sphere 2 moves from the region below sphere 1 (where
�Ux <0) to the region above sphere 1 (where �Ux > 0). Thus, the particles initially
approach each other but then they separate without passing each other – they swap
their vertical positions instead.

The dependence of the relative vertical velocity �Uz on particle separation �x is
depicted in figure 4 for a particle pair aligned in the flow direction. The results indicate
that in wall-bounded systems the relative vertical particle velocity changes sign at a
critical particle separation �crit that depends on the channel width and the position
of the particles with respect to the walls of the channel. For �x >�crit the sign of
�Uz is consistent with the topology of the swapping trajectories, and for �x <�crit

the sign of �Uz corresponds to closed orbits. No such sign change, however, occurs
in free space.

Although particle behaviour on swapping trajectories seems at first counterintuitive
(the vector connecting the particle centres rotates with an angular velocity opposite
to the vorticity of the external flow) it can be qualitatively explained by considering
an analogy with shear flow in a channel blocked by an obstacle. If the channel is
completely blocked, the fluid dragged by a wall towards the obstacle is deflected to the
other side of the channel and returns along the opposite wall. If the channel is partly
blocked (by one of the spheres in our system) the streamlines that directly approach
the obstacle are deflected and exhibit the flow-reversal behaviour. Analogously, in
a two-sphere system the swapping motion of each particle is produced by the flow
deflected by the other particle.

A more detailed, quantitative explanation of the swapping mechanism is obtained
by analysing the effect of the walls on the flow pattern v1 around a single sphere in
shear flow in a weakly confined system. To leading order in the particle–particle and
particle–wall separations, the fluid velocity v1 and the velocity of the second particle
are identical. Therefore, for weak confinements the comparison of the particle and
fluid velocities has a quantitative meaning (assuming that the interparticle distance
remains sufficiently large), and for strongly confined systems, pair trajectories are
expected to qualitatively resemble the streamlines of v1.

The flow pattern around a single force- and torque-free sphere in an unbounded and
in a wall-bounded shear flow is illustrated in figure 5. The streamlines are depicted in
the coordinate system centred on the particle. Figure 5(a) shows the familiar velocity
field for a particle in free space, and figure 5(b) represents the corresponding flow
for a sphere in the middle of a channel with wall separation H = 5d . As expected, in
the wall-bounded system there is a region of reversing streamlines analogous to the
swapping trajectories shown in figure 3.

The hydrodynamic mechanism that leads to the flow reversal (and hence to the
particle position swapping) can be explained by examining the wall reflection δv∗

1

of the perturbation flow δv1 produced by a sphere in the external shear flow, as
schematically represented in figure 6. Only the reflection from the lower wall will be
discussed because the upper wall produces an analogous effect. In our analysis we
assume that the wall is in the plane z = 0 and the particle is at r = (0, 0, z1), where
z1/d � 1.
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Figure 5. Fluid streamlines around a single sphere in external shear flow (2.2) in free space
(a) and in a channel of width H/d = 5 (b). Trajectories are depicted in a coordinate system
centred on the sphere. The particle in the channel is in the midplane z = H/2.

Figure 6. Explanation of the position-swapping mechanism: the wall reflection of the stresslet
flow produced by one of the spheres drives the other sphere across the channel, causing reversal
of the relative particle motion.

The perturbation flow δv1 that results from the scattering of the external flow (2.2)
by the sphere can be expressed by the formula (Kim & Karrila 1991)

δv1(r) = − 1
8
γ̇ d3

[
5

2

xz̄

r̄4
ˆ̄r + 1

8
d2∇xz̄

r̄5

]
, (3.3)

where r̄ = (x, y, z̄) (with z̄ = z − z1) is the position of a field point r with respect
to the particle centre, r̄ = |r̄ |, and ˆ̄r = r̄/r̄ . The flow δv1 is a superposition of the
O(r̄−2) radial stresslet contribution (the first term on the right-hand side of the above
equation) and the O(r̄−4) potential contribution (the second term).
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Figure 7. (a) Scattered flow (3.3) produced by a sphere in shear flow (2.2) and (b) reflection
δv∗

1 of this flow from the wall located at z̄/d = − 5. The direction of the flow δv∗
1 is consistent

with the swapping mechanism illustrated in figure 6.

The streamlines of the perturbation velocity field (3.3) are shown in figure 7(a) for a
system with particle–wall separation z1/d = 5. In the plane z̄ = 0 (the horizontal plane
passing through the particle centre), the radial stresslet contribution vanishes, and the
shorter-range potential-flow contribution is vertical, with an orientation consistent
with the vorticity of the external flow.

Relation (3.3) indicates that at the wall surface (i.e. the plane z̄ = −z1) the
perturbation flow δv1 points downwards for x > 0 and upwards for x < 0. To ensure
that there is no fluid flux through the wall, the flow reflected from the wall, δv∗

1, must
point in the opposite direction. Therefore, assuming that the vertical component of
δv∗

1 is a monotonic function of z (at least up to the particle position), we find that
the reflected flow δv∗

1 has the direction needed to produce the reversing streamlines
(cf. figure 6).

It can be shown that δv∗
1 decays as O(r̄ ′−2) with r̄ ′ the distance from the image

singularity at r = (0, 0, −z1) (the image flow involves the reflection of the stresslet). It
follows that for z̄ = 0 the flow δv∗

1 dominates the oppositely directed O(r̄−4) potential-
flow term of δv1, except in the region near the particle. This behaviour is consistent
with the pattern of the streamlines depicted in figure 5(b) and with the topology of
pair trajectories represented in figure 3(b).

The above essential features of the reflected flow can be explicitly seen for a simple
case of a free interface. To the leading order in z1/d , the flow reflected from such an
interface is given by the expression

δv∗
1(r) = γ̇ d3 5

16

xz̄′

r̄ ′4
ˆ̄r ′, (3.4)

where z̄′ = z + z1 and r̄ ′ = (x, y, z̄′) denote the z-coordinate and position vector in the
reference frame centred at the image singularity. Note that for positions close to
the particle, the magnitude of the flow (3.4) is O(d2x/r̄ ′3), because both d 	 r̄ ′ and
x 	 r̄ ′.

For rigid walls, the crucial features of the reflected flow (i.e. the direction consistent
with the swapping particle motion, the overall (d/r̄ ′)2 decay, and the small additional
factor O(x/r̄ ′) for δv∗

1z near the plane x = 0) can be derived using the Lorentz (1907)
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Figure 8. Location of zeros of the relative vertical particle velocity �Uz and sign of �Uz

for two spheres in the midplane z = H/2 of a channel with wall separation H/d = 5. Shaded
region (of diameter d) corresponds to overlapping spheres. Solid lines indicate the location of
zeros that delimit the region of swapping trajectories, and dotted lines represent zeros in the
periodic-orbit domain.

reflection formula, as discussed in Appendix A. These features can also be seen from
the streamlines of δv∗

1 depicted in figure 7(b).
In the above analysis of the particle-swapping mechanism we have focused on a

single reflection δv∗
1 of the perturbation flow from a wall. However, complete multi-

body hydrodynamic particle interactions in the presence of a wall are accurately
accounted for in our quantitative calculations. While our paper is focused on particle
motion in the creeping-flow regime we also note that fluid reversal zones and position-
swapping pair trajectories similar to those seen in figures 3 and 5 have been observed
at finite Reynolds numbers for unconfined configurations (Mikulencak & Morris
2004; Subramanian & Koch 2006; Kulkarni & Morris 2007).

3.3. The domain of swapping trajectories

A pair of particles on a swapping trajectory crosses the horizontal plane �z = 0 in the
direction corresponding to the counter-rotation of the vector connecting the particle
centres (see § 3.2). Since the counter-rotation ceases at the points where �Uz changes
sign, the region of swapping trajectories is delimited by a set of critical trajectories for
which �Uz → 0 when the particle pair approaches the plane �z = 0. (We note that for
�z = 0 the condition �Uz = 0 implies that �U = 0 because the horizontal components
of the relative velocity (3.1) vanish owing to the symmetry of the problem.)

For a two-wall system a typical graph showing the sign of the vertical relative
velocity �Uz and the location of points where �Uz = 0 in the flow–vorticity plane
�z = 0 is presented in figure 8. The set of points where �Uz vanishes consists of two
subsets. One is the line �x = 0 in the region with no particle overlap, and the other is
the circle �ρ = �crit (where �ρ = �x êx + �y êy denotes the horizontal relative position
vector, �ρ = |�ρ|, and �crit is the circle radius). The critical interparticle distance �crit

does not depend on the orientation of the particle pair in the plane �z = 0 owing to
symmetry (see the explanation in Appendix B).

By analysing the direction of sphere motion, one can show that the area inside the
circle of zeros �ρ = �crit corresponds to closed trajectories passing through the plane
�z = 0. Therefore, only the part of the line �x = 0 outside this circle is associated
with the critical trajectories that delimit the swapping region. We note that closed
orbits also exist in unbounded shear flow (Batchelor & Green 1972). In this case
the whole surface �z = 0 corresponds to particle pairs on closed trajectories (as in
figure 3a).
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Figure 9. Radius �crit of the circle of zeros of �Uz. (a) The normalized radius versus channel
width H for a particle pair in the midplane z = H/2. Solid line represents numerical results
and dashed line the asymptotic scaling (3.6). (b, c) �crit versus position z of the particle pair for
several channel widths H/d (as labelled). The results in (b) are scaled to emphasize asymptotic
behaviour (3.6), and the results in (c) are shown unscaled to emphasize the near-wall behaviour.

For weakly confined systems the location of zeros of �Uz results from the balance
between the ∼(�ρ/d)−4 potential-flow contribution in equation (3.3) and the wall
reflection of the stresslet. As already indicated in § 3.2 (see also Appendix A), the
leading-order behaviour of the vertical component of the reflected flow in the region
near the particle is

δv∗
1z ∼

(
d

H

)2
�ρ

H
. (3.5)

Thus, for a fixed position z/H of the particle pair in the channel we find that

�crit/d ∼ (H/d)3/5, H/d � 1. (3.6)

The dependence of the radius �crit on the channel width for a particle pair in the
midplane z/H = 1

2
is plotted along with the asymptotic behaviour (3.6) in figure 9(a).

Figures 9(b) and 9(c) show the dependence of �crit on the position of the particle
pair with respect to the channel walls for different H . The results represented in
figure 9(b) correspond to larger values of H/d , and they are rescaled to emphasize the
asymptotic behaviour (3.6). In figure 9(c) the results are shown unscaled for moderate
values of H/d . Note that for sufficiently small values of z/H the unscaled curves
corresponding to different channel widths coincide, which indicates that the particle
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coordinates (�y,�z) for particles moving symmetrically with respect to the midplane z = H/2.
(b, c) The relative vertical offset �z versus the upstream vertical position z1 of the particle
closer to the lower wall, for particles moving in the flow–gradient plane �y = 0. The results
in (a) and (b) are rescaled to emphasize the asymptotic behaviour (3.7), and the results in
(c) are shown unscaled to emphasize the near-wall behaviour. The curves represent the initial
coordinates of the limiting trajectories, and the regions below the curves correspond to the
swapping trajectory domains.

mobility is dominated by the single-wall contribution except for particles close to the
centre of the channel.

An alternative way of characterizing the domain of swapping trajectories is to
show the corresponding upstream region of the transverse relative coordinates
(�y, �z), i.e. the region through which the swapping trajectories pass in the limit
of infinite streamwise particle separations �x → − ∞. For trajectories that cross
a given horizontal plane �z = 0 during the particle motion, the boundary of the
upstream region can be determined by integrating the trajectories backwards, starting
near the loci of zeros of �Uz in the plane �z = 0.

In figure 10 the upstream boundaries of the swapping-trajectory regions are shown
for several values of the wall separation H/d . Figure 10(a) depicts these boundaries
for the trajectories that are symmetric with respect to the midplane z = H/2 (strictly
speaking, symmetric with respect to the axis defined by the intersection of the planes
y = (y1 + y2)/2 and z = H/2). Figure 10(b, c) illustrates the dependence of the vertical
extent of the upstream regions �z on the initial position z1 of the lower particle
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Figure 11. Vertical extent �z of the upstream domains of swapping trajectories for particles
moving symmetrically with respect to the midplane z = H/2 (as in figure 10a), plotted versus
the channel width H . Solid line represents numerical results and dashed line the asymptotic
behaviour (3.7). The results in the inset are rescaled accordingly.

for particle pairs moving in the flow–gradient plane �y = 0. In all the panels the
swapping-trajectory domains correspond to the areas below the curves.

By the scaling argument outlined in Appendix C, one can show that the vertical
extent of the upstream swapping-trajectory region scales as

�z/d ∼ (H/d)−1/2, H/d � 1, (3.7)

which is confirmed by the results shown in figure 11. The vertical axes of the plots
shown in figure 10(a, b) are scaled accordingly, to collapse the results for large values
of H/d onto the asymptotic master curves. The results in figure 10(c) are shown
unscaled to emphasize the near-wall behaviour of the swapping trajectory domain.

An interesting feature of the swapping-trajectory regions shown in figure 10(a) is
that these domains are delimited by straight horizontal lines for �y � �ycrit ≈ �crit.
The straight-line sections correspond to the trajectories that pass through the circle
of zeros �ρ = �crit of the vertical relative velocity �Uz when the particle pair crosses
the horizontal plane �z = 0. The remaining portions of the upstream boundaries of
the swapping-trajectory regions correspond to the zeros of �Uz located at the axis
�x = 0 in the plane �z = 0 (cf. the geometry of zeros of �Uz depicted in figure 8). The
upstream coordinate �z in the region �y � �ycrit is independent of the corresponding
position along the circle of zeros of �Uz for the same reason as �crit does not depend
on the orientation angle φ (see Appendix B).

The results in figure 10(a) indicate that the lateral extent �y/H of the
upstream swapping-trajectory region (normalized by the wall separation H ) remains
approximately constant when the wall separation H increases. However, the horizontal
coordinate �ycrit/H of the end point of the straight-line section decreases, as required
by the scaling (3.6).

We conclude this section by discussing the distance of minimal interparticle
approach for pairs of spheres on swapping and non-swapping trajectories. As we
have already indicated, the interparticle gap (3.2) on trajectories of the swapping kind
typically remains relatively large. For spheres that pass through a given horizontal
plane �z = 0, the minimal interparticle separation on swapping trajectories coincides
with the radius �crit of the circle of zeros of the relative transverse velocity �Uz.
According to the results shown in figure 9(a), �crit is typically well above the particle
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Figure 12. (a) Domains in the upstream transverse coordinates (�y,�z), corresponding to
several values of the minimal gap ε (as labelled) for a two-wall system with wall separation
H/d = 5. (b) The ratio between the frequency χε of near-contact particle encounters and the
frequency χswap of swapping-trajectory encounters in a dilute suspension under shear, versus
the cutoff value of the minimal gap ε for several wall separations H/d . All results are for
trajectories symmetric with respect to the midplane z = H/2.

diameter d (except for very small particle–wall separations). Thus, the minimal
interparticle gap εmin = �crit/d−1 is usually O(1). In contrast, the minimal interparticle
gap on non-swapping open trajectories may be smaller by several orders of magnitude.
The sharp transition from the large gaps on the swapping trajectories to much smaller
values of ε on the nearby non-swapping ones is illustrated in figure 3(c).

The domains of non-swapping trajectories corresponding to specific values of the
minimal gap are depicted in figure 12(a) for a system with a wall separation H/d = 5
and particles moving symmetrically with respect to the midplane z = H/2. The results
indicate that the smallest values of the minimal gap are attained for near-critical non-
swapping trajectories in the flow–gradient plane �y = 0. According to our additional
calculations the minimal gap decreases for stronger confinements, although it typically
remains comparable to the distance of minimal approach εmin = 4.2 × 10−5 for two
spheres on open trajectories in the unbounded shear flow (Arp & Mason 1977).

In a system of spheres interacting via a short-range repulsive potential, the near-
contact particle encounters may result in cross-streamline particle displacements.
However, for moderate-width channels, the upstream region corresponding to very
small gaps is significantly smaller than the upstream region of swapping trajectories.

Quantitatively, the rate χ of particle encounters of a given type can be evaluated by
integrating the upstream relative particle velocity �U∞ over the appropriate upstream-
coordinate region. The ratio χε/χswap between the rates of near-contact and swapping
collisions for trajectories symmetric with respect to the midplane z = H/2 is plotted
in figure 12(a) versus the cutoff value of the minimal gap for channels of different
width. The results indicate that χε/χswap 	 1 for sufficiently small values of the gap,
especially at moderate confinements.

4. Particle migration due to position-swapping binary encounters
As shown above, the position-swapping particle encounters result in cross-streamline

particle migration in suspensions confined by planar (or nearly planar) walls. Although
this migration mechanism may be dominant in dilute suspensions under moderate-
confinement conditions, it has never been described. In this section we present
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our quantitative predictions for migration of spherical particles in parallel-wall
channels.

4.1. Population-balance simulations

In order to illustrate the role of particle swapping in suspension flows, we have
performed a population-balance simulation of a mixture of two species of equal-size
spheres in a parallel-wall channel of width H/d = 5. Initially, the particles of species
one are located in the upper portion of the channel, z > H/2, and the particles of
species two in the lower portion z < H/2. In each part of the channel the particles are
distributed randomly. Since the system is translationally invariant in the transverse
directions x and y, the particle distribution is characterized only by the vertical
coordinate z.

To mimic the evolution of a dilute suspension, the particle population is updated
using a Boltzmann–Monte Carlo technique. Accordingly, a pair of particles is chosen
randomly from the ensemble representing the system, with a probability proportional
to the upstream relative velocity �U∞. Then, a two-particle evolution run is performed
with a large initial offset in the streamwise direction |�x| � d and the transverse
offset �y chosen randomly from the uniform probability distribution truncated at
�ymax ≈ 8d . If the pair evolution results in position swapping, the particle ensemble
is updated accordingly.

Sample results of our population-balance simulations are presented in figure 13.
The calculations were performed using a set of 600 particles, and the average over
seven simulation runs was taken to reduce statistical fluctuations. Figure 13(a) shows
the initial random particle distribution, and figure 13(b) the distribution after 128
swapping collisions per particle. In the left panels the distribution is depicted by
plotting the vertical positions of 400 randomly chosen particles versus particle index.
The right panels represent the corresponding particle density (normalized to unity)
as a function of the position z across the channel. The results indicate that the
two particle species slowly mix together due to the particle-swapping phenomenon.
Without particle swapping, all spheres would preserve their initial vertical positions
(unless non-hydrodynamic interparticle forces are present).

4.2. Self-diffusion coefficient

Assuming that the wall separation H is much larger than the swapping range
�z, a sequence of uncorrelated particle displacements due to binary encounters in
suspension flow can be approximately described as a diffusion process. In this section
we focus on the transverse diffusivity of a tagged particle in a dilute suspension of
mechanically identical spheres.

As shown by da Cunha & Hinch (1996) in their paper on the shear-induced self-
diffusivity in a dilute suspension of rough spheres (also see Zarraga & Leighton 2001),
the transverse (cross-streamline) self-diffusion coefficient Ds, can be evaluated from
the relation

Ds = 1
2
n

∫∫
(�Z)2�U∞ d�y d�z, (4.1)

where the integration is over the upstream region of transverse relative coordinates
corresponding to particle encounters of a given type (e.g. swapping or direct
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Figure 13. Particle migration in a dilute binary suspension of equal-size spheres undergoing
shear flow in a parallel-wall channel with wall separation H/d = 5. (a) The initial state of the
system, and (b) the state after 128 swapping binary encounters per particle. The left panels
depict vertical positions z/d for randomly selected 200 particles of each species (versus the
particle index k), and right panels show the normalized particle density n across the channel.
The curves on the right of (b) represent the third-order polynomial fit to the histogram of the
particle distribution (taking the system symmetry into account).

particle collisions), n is the particle number density and �Z is the cross-streamline
displacement of the particle during a binary-encounter event.

Since initially the particles are well separated in the streamline direction, the relative
upstream velocity �U∞ = U∞(z2) − U∞(z1) is the difference of the velocities U∞(z) of
individual, non-interacting spheres at the positions z1 and z2 with respect to the
channel walls. For particles far from the walls we simply have �U∞ = γ̇ �z. More
generally, assuming that the initial particle offset �z is sufficiently small, the relative
particle velocity �U∞ can be expressed as

�U∞ = γ̇ α�z, (4.2)

where

α(z) = γ̇ −1 dU∞

dz
(4.3)

is the dimensionless derivative of the velocity of an individual sphere with respect
to its transverse position in the channel. According to our results (Zurita-Gotor,
B�lawzdziewicz & Wajnryb 2007), the velocity of a single sphere undergoing shear flow
in a parallel-wall channel differs very little from the local fluid velocity (2.2), except
when the particle is in the immediate wall proximity. Therefore, the approximation
α = 1 is often sufficient.
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Particles on swapping trajectories exchange their vertical positions, which implies
that the particle displacement �Z equals the upstream offset �z of the particles for
the interacting pair. Using the above result and relation (4.2), the integral with respect
to �z in equation (4.1) can be explicitly performed over the swapping-trajectory
region. The effective self-diffusivity can thus be determined from the resulting one-
dimensional integral

Dswap
s = 1

4
nγ̇ α

∫ ∞

−∞
�z4

max d�y, (4.4)

where �zmax = �zmax(�y) is the upstream vertical particle offset on the trajectory
that delimits the region of swapping trajectories (cf. the contour plots in figure 10a).
Rephrased in terms of the volume fraction φ = 1

6
πd3n and dimensionless particle

offsets �ỹ = �y/d and �z̃ = �z/d , equation (4.4) yields

Dswap
s = 1

4
γ̇ φd2D̃swap

s , (4.5)

where

D̃swap
s = 6π−1α

∫ ∞

−∞
�z̃4

max d�ỹ. (4.6)

The dimensionless self-diffusion coefficient D̃swap
s depends on the position z of the

particle pair across the channel. Since the problem is non-local, we assign z to be the
position of the particle pair when it crosses the horizontal plane �z = 0.

Our numerical results for the swapping contribution (4.6) to the effective self-
diffusion coefficient are presented in figure 14. Figure 14(a) shows D̃swap

s versus z

for several values of channel widths, and figure 14(b) shows the self-diffusivity at
the channel centre as a function of H . The results of our calculations indicate that
for H/d � 15 the self-diffusion coefficient D̃swap

s achieves its maximal value at the
channel centre, where the swapping effect is the strongest due to the superposition of
the flow reflected from two walls. In contrast, for H/d � 15 the maximum occurs at
the distance z/d ≈ 2 from each wall. The results also show that particle migration is
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suppressed near the walls, which is consistent with the observation that the vertical
extent of the particle-swapping domain is small near the walls (see figure 10b, c). The
effect of the decreased self-diffusivity in the near-wall regions is reflected in the shapes
of the density profiles depicted in figure 13.

The behaviour of D̃swap
s for H/d � 1 can be determined by combining relations

(3.7) and (4.6) and recalling that the lateral extent �y of the swapping region scales
with H for the large channel width (as depicted in figure 10a). Accordingly, we obtain
the relation

D̃swap
s = qd/H, (4.7)

where the numerical factor q depends on the position of the particle pair across the
channel z/H . For particles in the midplane z/H = 1

2
we find q ≈ 0.55, according to

the results shown in the inset of figure 14(b).

4.3. Comparison with experiment by Zarraga & Leighton

While the mechanism for particle migration due to the swapping trajectories has
not been proposed so far, the effect of the swapping motions was observed when
Zarraga & Leighton (2002) reported unusually large values of the hydrodynamic
self-diffusivity for a dilute suspension of spheres undergoing shear flow in a Couette
device. Their measurements gave the result Ds = 3.6 × 10−2 γ̇ φa2 (where a = 1

2
d is

the particle radius) for the low-density self-diffusion coefficient, whereas the estimate
of the contribution due to particle roughness was at least four times smaller: it
ranged from Drough

s = 3.0 × 10−3 γ̇ φa2 to 8.4 × 10−3 γ̇ φa2, depending on the assumed
roughness amplitude. This discrepancy has been unaccounted for, and the result of
the experiment puzzling.

By analysing the effect of the channel walls on particle motion we provide a simple
explanation for the anomalous value of the self-diffusion coefficient. The Zarraga
& Leighton (2002) measurements were performed in a channel with wall separation
H/d = 20. For this geometry we find that the swapping contribution to the self-
diffusion coefficient in the centre of a channel is Dswap

s = 2.4 × 10−2 γ̇ φa2. Moreover,
in the whole central region the diffusivity Dswap

s only weakly depends on the position
z, according to the results shown in figure 14. Assuming the upper limit of the
roughness parameter εr = 1.8 × 10−2, quoted by Zarraga & Leighton (2002), we find
Drough

s = 6.7 × 10−3 γ̇ φa2 (note that Drough
s is slightly smaller than the corresponding

value in infinite space because the swapping mechanism produces a small reduction
in the rate of direct particle collisions). Combining the swapping and roughness
contributions, we obtain Ds = 3.1 × 10−3 γ̇ φa2 for the total self-diffusion coefficient.
Thus our result agrees with the experimental value with accuracy of 15 %. We also
note that experiments with slightly smaller spheres (Leighton, private communication)
confirm the scaling result (4.7) for self-diffusivity.

In this paper we focus on systems of equal-size spheres but wall-induced cross-
streamline particle migration also occurs in bidisperse or polydisperse suspensions. In
such suspensions migration resulting from particle roughness is considerably smaller
than in monodisperse ones (Zarraga & Leighton 2001, 2002). Thus in polydisperse
systems particle swapping constitutes the dominant particle migration mechanism
even if there is significant particle roughness.

Moreover, cross-streamline displacements of two different-size particles undergoing
a binary swapping encounter differ because there is no fore–aft symmetry. It follows
that the total suspension density is affected by the swapping trajectories, in addition to
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the migration of individual particle species. In contrast, in monodisperse suspensions
the total density cannot be altered by position-swapping binary encounters.

5. Conclusions
The key finding of our study is that confining walls can qualitatively change the

topology of binary encounters of spherical particles in suspension flows. Specifically,
we have identified a new class of binary trajectories that result in cross-streamline
particle migration in a wall-bounded shear flow. Equal-size spheres on such trajectories
do not pass each other (as in an unbounded system) but, instead, they exchange their
transverse positions. While our explicit calculations are limited to equal-size spherical
particles in shear flow bounded by parallel planar walls, we expect that a similar
effect also exists for pressure-driven flows, particles of different sizes, and other wall
geometries.

We have shown that the cross-streamline particle motion is driven by the wall
reflection of the scattered flow produced by the particles. Namely, the reflection of
the flow produced by one of the spheres pushes the other approaching sphere across
the streamlines of the external flow towards the fluid region moving in the opposite
direction. Due to this mutual interaction, the particles turn around and return to
infinity without passing each other – they exchange their vertical positions instead.

The significance of our results stems from the fact that the wall-induced transverse
particle displacements associated with position-swapping binary encounters constitute
the sole mechanism for cross-streamline migration of spherical non-Brownian particles
at low suspension concentrations (if there are no non-hydrodynamic forces). Such
migration was observed by Zarraga & Leighton (2002) who found an anomalously
large self-diffusion coefficient in a confined suspension of spheres. Up till now,
however, their measurements have remained unexplained. In this paper we show that
the swapping mechanism provides a quantitative explanation.

A sequence of uncorrelated binary position-swapping particle encounters in a
monodisperse suspension causes a macroscopic self-diffusion process. In multi-
component systems a sequence of such encounters results in mutual diffusivity.
Moreover, the swapping trajectories produce migration not only in the velocity-
gradient direction (considered herein) but also in the direction of fluid vorticity.

In addition to our two-particle results, we have found that in the presence of the
wall there is a domain of reversing streamlines around a single sphere in shear flow.
Fluid elements in such streamlines undergo transverse displacements, and a random
sequence of such displacements in a confined suspension results in fluid mixing,
even at a low particle concentration. This wall-induced mixing may have important
microfluidic applications.

Furthermore, the trajectory reversal associated with particle-swapping behaviour
prevents near-contact particle encounters for a range of upstream initial conditions
(the particles separate before reaching a near-contact configuration). Such a
hydrodynamic shielding effect may be especially important for a chain of
particles with slightly different cross-streamline positions in a microfluidic channel.
Thus, proper understanding of the position-swapping mechanism may contribute
towards finding better methods of controlling particle motion in microfluidic
devices.

Other consequences of the particle-swapping mechanism will be described in future
publications. In particular, we will show that binary particle collisions in a dilute
suspension under shear may produce a layered particle distribution. Our preliminary
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results concerning such a layering process have already been presented (Zurita-Gotor,
B�lawzdziewicz & Wajnryb 2005).
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Appendix A. Flow reflected from a rigid wall
According to the Lorentz (1907) expression, the reflection δv∗

1 of the flow field (3.3)
in a rigid wall at z = 0 can be expressed by the following formulae (Bhattacharya &
B�lawzdziewicz 2002):

δv∗
1 = P̂

(
R̂0 + z1R̂1 + z2

1R̂2

)
· δv1 (A 1)

where

R̂0 = −Iz − 2z̄∇êz + z̄2∇2I, (A 2)

R̂1 = − 2∇êz + 2z̄∇2I, (A 3)

R̂2 = ∇2I. (A 4)

In the above relations, z̄ = z − z1 is the coordinate relative to the source position, I is
the identity tensor, Iz = I − 2êz êz, and P̂ is the reflection operator with respect to the
plane z = 0,

[P̂w](x, y, z) = Iz · w(x, y, −z). (A 5)

By inserting (3.3) into (A 1) and evaluating the order of magnitude of different terms,
we find that the overall decay of the reflected flow δv∗

1 with the wall–particle distance
z1 is O((d/z1)

2). Equations (3.3) and (A 1) also indicate that the vertical component
δv∗

1z is an odd function of the variable x. Therefore, for x/z1 	 1 we find

δv∗
1z ∼

(
d

z1

)2
x

z1

. (A 6)

For a given polar angle φ, equation (3.5) is obtained from (A 6) and an assumption
that z1 ∼ H . To obtain relation (3.6), we use (3.3), (3.5), and the observation that the
dependence of both δv1z and δv∗

1z on the polar angle φ is cos φ (which follows from
symmetry, as explained in Appendix B).

Appendix B. Location of zeros of �Uz in the plane �z = 0

The critical interparticle distance �crit does not depend on the orientation of the
particle pair in the plane �z = 0, which can be shown by decomposing the external
flow (2.2) into the longitudinal component (along the line connecting particle centres)
and transverse component (normal to this line),

vext = vext
‖ + vext

⊥ . (B 1)

By symmetry, the transverse velocity vext
⊥ does not produce any vertical particle

motion. Therefore, only the longitudinal problem defines the location of zeros of
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�Uz. Moreover, the location of points �Uz = 0 does not vary with the magnitude of
the projection vext

‖ . Thus the distance �crit is independent of the orientation of the
vector �ρ.

By a similar argument one can demonstrate that the upstream swapping-trajectory
domain in the variables (�y, �z) is delimited by a straight-line section �z = const
for �y � �ycrit (as shown in figure 10a). The straight-line section corresponds
to trajectories that pass through the circle of zeros of �Uz. Since the transverse
component vext

⊥ of the external flow does not produce any vertical particle motion,
for all initial orientations of the particle pair on the circle �ρ = �crit the vertical
evolution of the particles is thus the same, except for a varying time scale.

Using the flow decomposition (B 1) one can also show that for a given �ρ, the
vertical velocity �Uz varies as cos φ with the polar angle φ of the relative-position
vector �ρ (�Uz varies with φ in the same way as the flow component vext

‖ ). The

plots of �Uz vs �x shown in figure 4 are thus sufficient to determine �Uz for all
orientations of a particle pair in a given plane z = const.

Note also that our numerical results indicate that additional changes of sign in the
relative vertical velocity �Uz may occur at large interparticle distances. This would
lead to more complex particle recirculation patterns than those described herein.
However, the magnitude of �Uz at large distances is extremely small owing to the
exponential decay of the vertical velocity (Bhattacharya et al. 2006a). Therefore,
domains of trajectories with different topology are limited to very small regions in
the configurational space. We note that multiple changes in sign of the velocity field
in a parallel-wall channel were described by Hackborn (1990) for a flow produced by
a vertical rotlet.

Appendix C. Proof of relation (3.7)
As we have shown in our previous publications (Bhattacharya et al. 2006a, b), the

vertical velocity components for two spheres in Stokes flow in a parallel-wall channel
decay exponentially on the length scale H . Thus, the vertical offset of the particles
along the pair trajectory evolves only for �x � H . The relative lateral velocity of the
particles in shear flow (2.2) is �Ux ∼ γ̇ �z, where �z is a typical vertical offset along
the trajectory. Therefore,

t0 ∼ γ̇ −1H/�z (C 1)

is the time scale for the evolution of the vertical particle positions. During the time
interval (C 1) the vertical offset �z may attain the magnitude

�z ∼ t0�Uz, (C 2)

where �Uz is the typical value of the vertical component of the relative particle
velocity.

According to equation (3.3), the perturbation velocity field δv1 produced by a
spherical particle of diameter d in an unbounded shear flow with the shear rate γ̇

scales as δv1 ∼ γ̇ d(d/r̄)2, where r̄ is the distance from the particle. In a wall-bounded
system, this perturbation flow interacts with the walls at the distance r̄ ∼ H and
then acts on the second particle at a distance �x � H , producing its vertical motion.
Therefore, the relative vertical velocity of the particles has the magnitude

�Uz ∼ γ̇ d(d/H )2. (C 3)

Relation (3.7) is obtained by combining equations (C 1)–(C 3).
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